Opioid regulation of the mouse delta-opioid receptor expressed in human embryonic kidney 293 cells.
نویسندگان
چکیده
Opioid analgesics are used extensively in the management of pain. Although the clinically effective opioids bind with high affinity to the mu-opioid receptor, studies have suggested that the delta-opioid agonists might represent more ideal analgesic agents, with fewer side effects. A limitation to opiate effectiveness is the development of tolerance, an event that has been linked to opioid receptor desensitization. To gain a better understanding of delta-receptor agonist regulation, the cloned mouse delta receptor was stably expressed in human embryonic kidney 293 cells, and the functional effects of agonist pretreatment were examined. With a 3-hr pretreatment protocol, the delta-selective agonists [D-Pen2,D-Pen5]enkephalin, [D-Ala2,D-Leu5]enkephalin, and [D-Ser2,Leu5]enkephalin-Thr and the nonselective opioids levorphanol, etorphine, and ethylketocyclazocine were found to desensitize delta receptors. [D-Pen2,D-Pen5]enkephalin, [D-Ser2,Leu5]enkephalin-Thr, [D-Ala2,D-Leu5]enkephalin, and etorphine treatments also caused a pronounced internalization of the epitope-tagged delta receptor, suggesting that the desensitization and internalization may be related. In contrast, levorphanol pretreatment did not internalize the receptor but still resulted in a 400-fold reduction in potency, suggesting that prolonged treatment with levorphanol only uncoupled the delta receptor from adenylyl cyclase. In contrast to the desensitization induced by peptide-selective delta agonists, pretreatment with the delta-selective nonpeptide agonist 7-spiroindanyloxymorphone and morphine sensitized the opioid inhibition of forskolin-stimulated cAMP accumulation. This differential regulation of the delta receptor may be due to variations in the ability of agonists to bind to the receptor. This hypothesis was supported by the finding that a point mutation that converted Asp128 to Asn128 (D128N) diminished the ability of delta-selective agonists to inhibit cAMP accumulation while increasing the potency of morphine to reduce cAMP accumulation. In particular, a lack of desensitization of the delta receptor by morphine may contribute to our understanding of the molecular basis of development of morphine-induced tolerance and dependence.
منابع مشابه
P-24: Opioid and Progesterone Signaling Is Obligatoryfor Early Human Embryogenesis
Background: The growth factors that drive the division and differentiation of stem cells during early human embryogenesis are unknown. The secretion of endorphins, progesterone (P(4)), human chorionic gonadotropin, 17beta-estradiol, and gonadotropin-releasing hormone by trophoblasts that lie adjacent to the embryoblast in the blastocyst suggests that these pregnancy-associated factors may direc...
متن کاملDelta Opioid activation of the Mitogen-activated protein kinase cascade does not require transphosphorylation of Receptor Tyrosine Kinases
BACKGROUND In this study, we investigated the mechanism(s) by which delta opioids induce their potent activation of extracellular signal-regulated protein kinases (ERKs) in different cell lines expressing the cloned delta-opioid receptor (delta-OR). While it has been known for some time that OR stimulation leads to the phosphorylation of both ERK isoforms, the exact progression of events has re...
متن کاملMorphine activates opioid receptors without causing their rapid internalization.
We have examined the endocytic trafficking of epitope-tagged delta and mu opioid receptors expressed in human embryonic kidney (HEK) 293 cells. These receptors are activated by peptide agonists (enkephalins) as well as by the alkaloid agonist drugs etorphine and morphine. Enkephalins and etorphine cause opioid receptors to internalize rapidly (t1/2 approximately 6 min) by a mechanism similar to...
متن کاملUbiquitination-independent trafficking of G protein-coupled receptors to lysosomes.
Ubiquitination of cytoplasmic lysine residues can target G protein-coupled receptors (GPCRs) to proteasomes and has recently been shown to also be required for sorting of certain GPCRs to lysosomes following ligand-induced endocytosis. We addressed the generality of this mechanism by examining regulated proteolysis of the murine delta opioid receptor (DOR) expressed in human embryonic kidney 29...
متن کاملBuprenorphine-elicited alteration of adenylate cyclase activity in human embryonic kidney 293 cells coexpressing κ-, μ-opioid and nociceptin receptors
Buprenorphine, a maintenance drug for heroin addicts, exerts its pharmacological function via κ- (KOP), μ-opioid (MOP) and nociceptin/opioid receptor-like 1 (NOP) receptors. Previously, we investigated its effects in an in vitro model expressing human MOP and NOP receptors individually or simultaneously (MOP, NOP, and MOP+NOP) in human embryonic kidney 293 cells. Here, we expanded this cell mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 52 2 شماره
صفحات -
تاریخ انتشار 1997